суббота, 7 января 2012 г.

Любопытный и малоизвестный факт о минорах


Рассмотрим k независимых векторов в n-мерном вещественном пространстве. Выпишем их в kxn-матрицу. Выпишем под этой матрицей еще одну матрицу, составленную из каких-нибудь базисных линейных соотношений на исходные вектора.

Пример: k=2, n=4.

1  1  1  1
1  2  3  4
-------------
1 -1 -1  1
-1 2 -1  0

Выберем максимальный минор (какой-нибудь) верхней матрицы и "дополнительный минор" нижней матрицы. Например

|1  1|  1  1    минор {1,2}
|1  2|  3  4
--------------
1 -1 |-1  1|    минор {3,4}
-1 2 |-1  0|

или

1  |1|  1  |1|    минор {2,4}
1  |2|  3  |4|
--------------
|1 |-1 |-1| 1    минор {1,3}
|-1| 2 |-1| 0

Любопытный факт: модуль отношения верхнего минора к нижнему не зависит от минора.
Интересующимся: ищите по термину "определитель точной последовательности"

Комментариев нет:

Отправить комментарий